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For convection in a porous medium the dependence of the Nusselt number on the 
Rayleigh number is examined to sixth order using an expansion for the Rayleigh 
number proposed by Kuo (1961). The results show very good agreement with 
experiment. Additionally, the abrupt change which is observed in the heat 
transport at a supercritical Rayleigh number may be explained by a breakdown 
of Darcy’s law. 

1. Introduction 
Convection in a porous medium uniformly heated from below is of considerable 

geophysical interest, as this phenomenon may occur within the earth. Also, t8he 
problem has an important technical application, namely t o  the study of the pre- 
vention of convection and thereby freezing in road and railroad constructions 
(frozen soil, frost heave). It is also worth mentioning that convection in porous 
media may provide a convenient means of experimentally demonstrating non- 
linear effects in convection such as the preferred cell pattern or hysteresis. In  
ordinary BBnard convection it is necessary to use extremely thin fluid layers t o  
detect these phenomena (see Palm, Ellingsen & Gjevik 1967)) but in porous media 
the friction force is much larger, so the depth of the fluid layer can be greatly 
increased. 

The possibility of free convection in a porous medium heated uniformly from 
below and the similarity to B6nard convection were pointed out by Horton & 
Rogers (1945) and Lapwood (1948). Wooding (1957, 1958) has extended these 
studies, Elder (1967) and Schneider (1963) have performed laboratory experi- 
ments, and Elder (1967) has also attacked the problem by a numerical method. 

In  the present paper the nonlinear equations will be solved by expanding the 
variables using a parameter introduced by Kuo (1961) for ordinary BBnard con- 
vection. This expansion converges rapidly and gives very good agreement with 
observational data. The result is valid up to Rayleigh numbers about six times 
the critical value. 

The dependence of the Nusselt number on the Rayleigh number is also found 
by physical arguments for moderate and high Rayleigh numbers. When the 
Reynolds number is increased to about one, Darcy’s law ceases to be valid and 
new phenomena appear. 
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2. The equations of motion for a porous medium 
The porous medium may be thought of as being composed of closely packed 

uniform spheres (grains) completely surrounded by a homogeneous fluid. The 
equations governing the motion of the porous medium for the steady case may be 
written as (Palm & Weber 1971) 

v.VT = K,V~T. (2.3) 

Here p is the pressure, po a standard density, a the coefficient of expansion, T 
the temperature, g the acceleration of gravity and K ,  the thermal diffusivity for 
the porous medium. Cf, and Xp, denote the viscous drag and pressure drag, 
respectively, acting on the grains within a unit volume. For small Reynolds 
number the total drag is a linear function of the velocity v (Darcy's law): 

where ,u is the viscosity and k the permeability. 
It is assumed that the material is of infinite horizontal extent and bounded by 

two horizontal boundaries separated by a distance h. Also, AT is defined as the 
temperature difference between these horizontal boundaries. The field variables 
may then conveniently be made dimensionless by choosing 

h, AT, P K m / k ,  Km/h (2.5) 

as units of length, temperature, pressure and velocity respectively. Equations 
(2.1)-(2.3) then take the form (Wooding 1957) 

-Vp+RTk-v  = 0, (2.6) 

v . v  = 0, (2.7) 

v.VT = V2T. (2.8) 

R = kgaATh/Km v (2.9) 

Here R is a Rayleigh number defined by 

and k is the unit vector in the vertical direction. If the horizontal boundaries are 
assumed to be impermeable and perfect heat conductors the critical Rayleigh 
number is found to be 47r2 (Lapwood 1948). 

According to Schluter, Lortz & Busse (1965) two-dimensional motion is the 
only stable mode for moderately supercritical Rayleigh numbers in ordinary 
BBnard convection. A nearly identical proof shows that this is true also for con- 
vection in a porous medium; we shall therefore consider only two-dimensional 
motion. 

By introducing 8, defined by 
T = T , - z + ~ ,  (2.10) 
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where To is a standard (dimensionless) temperature, eliminating the pressure and 
applying the equation of continuity, we finally obtain 

V4w+RV:w == RV;(V.VB), (2.11) 

= V.VO, (2.12) 

(2.13) 

Here the x axis is horizontal and the z axis vertical, u and w denote the horizontal 
and vertical velocity, respectively, and V: is the two-dimensional Laplacian. The 
boundary conditions are 

w = B = O  for z = O , I .  (2.14) 

3. Solution of the nonlinear equations 

7, which is defined by 

where R, is the critical Rayleigh number, so that 7 < 1. The solution of (2.11)- 
(2.13) may then be written as 

Following Kuo (1960) we expand the solution in a power series in the parameter 

?I2 = (R-R,)/R, (3.1) 

(3.2) I w = qw(1) + TjZW(2) + . . . + r]nw(n) + . . . , 
0 = r]m + T j  W )  + . . . + r"B(n) + . . . . 

The Rayleigh number, which according to (3.1) is given by 

R = & / ( I  - v 2 ) ,  (3.3) 

may also be expanded in a power series in 7 or we may apply the 'finite ' formula 

where 

R = R, + Ro,(r]2 + . . . y2,), 
Ro, = Ro/( I - r2"). 

(3.4) 

(3.5) 
On expanding R,, in a power series we see that R,, is equal to R, plus terms of 
order higher than 2s. Therefore, to order 2s, R is given by (3.4) with Ros replaced 
by R,. However, retaining the higher order terms in R,, gives just as good pre- 
cision. This last procedure, which originally was proposed by Kuo (1961), leads 
to a more rapid convergence. With this choice of R,, we are working with a correct 
value of R. It seems plausible that this may improve the result if the problem 
depends more critically on a good estimate for R than for the velocity and the 
temperature. 

By introducing (3.2) and (3.4) into (2.11) we obtain for the first-order equation 

V4~(1)+ R,V:W(') = 0, (3.6) 

with the boundary conditions (2.14). The solution of this eigenvalue problem 
may be written as 

w(l) = A cos ax sin nz, (3.7) 

with R, = (n2 + a2)'/u2. (3.8) 
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The minimum value of R,, say R,, is found to be 
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R, = 4n2 with a = n. (3.9) 

In  the following calculations we shall assume that the horizontal wavenumber 
aisgiven by (3.9). Thus, from (2.12) and (3.7) we have, to the first order, 

w(1) = A , cos nx sin nz, 
6(1) = ( A,/2n2) cos n-x sin nz,  

where the amplitude A ,  is to be determined from the nonlinear terms. 
Generally the terms in (3.2) may be written as 

1 w ( ~ )  = A ,  cos ax sin nz + C W&) cospux sin qn-z, 
P, 4 

I A 
n) - 2 cos ax sin nz + 2 @&) cospax sin qnz, e( - n 2 + a 2  

P, 4 

(3.10) 

(3.11) 

WgA = W E  (A,,&, ..., A 
@$$ = @&) (A,, A,, ..., AnJ 

(3.12) 
where 

are nonlinear functions of the amplitudes A,, . . ., An-,. The unknown functions 
W z  and @g (and the amplitudes A,, . .., A,) are found by substituting (3.2) and 
(3.4) into (2.11)-(2.13) and using the fact that the coefficient of each power of 7 
must vanish. 

For the second-order terms we find 

(3.13) 

(3.14) 

V4~( ' )+ROV21~@) = ROV?(~(').Vt?(')), 
VZi9(2)+W(2) = v(1). V@1), V. $2) = 0. 

Here v(l). VfW = t(A2,/n) sin 2n2, 

A ,  will be determined by the solvability condition for the fourth-order equation. 
Using (3.10) and (3.15), (2.11) gives for the third-order terms 

V4w(3)+ R , V ~ , W ( ~ )  = - R , , V ~ W ( ~ ) + R , V ~ ( V ( ~ ) .  VBC')) + R,V~,(V@).VB(~)) 
= (n2Ro,A, - &R,A;) cos n-x sin nz + &R,A; cos nx sin 3nz. 

(3.16) 

A: = 16~2R0,/R,,. (3.17) 

The solvability condition for this equation determines A,, yielding 

Equation (3.16) then determines W$J, while @$J is found from (2.12). 
The calculations have been carried out to sixth order, leading to 
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FIGTJRE 1. Values of N vs. RIR, for the second-, fourth- and sixth-order solutions. -.-. , 
general trend of various experimental data for RIR, 2 2.5; 0, numerical values obtained by 
Elder (1967). 

The heat transport is measured by the Nusselt number N, which is independent 
of x and given by 

N = WB- aFpx, (3.18) 

where the bar indicates a horizontal mean. Let W2), Nt4) and N@) denote the 
second-, fourth- and sixth-order approximations, for the Nusselt number, 
respectively. Then, by applying our results we find 

(3.19) 

(3.20) 

(3.21) 

4. Discussion of the solution 
In  figure 1, N @ ) ,  N(4) and N@) are shown (solid lines) as functions of R/Ro 

obtained from (3.19)-(3.21) with s = 1 , 2 ,  and 3 respectively. A curve illustrating 
the general trend of the various experimental data is also displayed in the figure. 
It turns out that for moderate values of R/R,, larger than about 2.5, say, this 
curve is close to a straight line. Comparing our approximate results with the data, 
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FIGURE 2. (a )  Isotherms for T - To and (a) mean temperature profile, both for R = 3R,. 

we see that iW2) is not a good approximation for any value of R/R,, while N@) is a 
very good approximation for RIR, 5 6. For larger values of R/Ro it obviously 
is necessary to take into account higher order approximations. For the sake of 
comparison we have also drawn the curves for N2), Nt4) and N@) obtained by re- 
placing R,, with R, in the formulae given above. It is noteworthy that this set 
of values converges much less well than the first set. The values for R/Ro < 2.5 
obtained by Elder (1967) using a suitable finite-difference method are also shown 
in this figure. 

For values of R/Ro larger than about 2.5, the isotherms and the mean tempera- 
ture profile have achieved the patterns which are characteristic for moderate 
Rayleigh numbers (see figure 2). An approximately constant mean temperature 
is a typical feature of the central region, as in BBnard convection, 

5. Comparison with experiments 
In  figure 1 the curve describing the observed data is nearly a straight line; i.e. 

the Nusselt number is approximately proportional to the Rayleigh number. 
This observed result may be made plausible by some simple physical arguments. 
According to (3.18) the Nusselt number may be written as 

N = w B  (5.1) 

provided that the heat convection is calculated in the central region. Let us 
consider the heat convection through the central plane z = 8. Assuming that at 
this level the friction force and the buoyancy force approximately balance each 
other, we have from (2.6) that 

w = Re, ( 5 . 2 )  

N = RP. (5.3) 

which when substituted into (5.i) gives 
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6’ is of order unity, so we may write 

Since the extremal values of the total temperature T - To occur at the horizontal 
boundaries, a is obviously less than Q. From figure 2 we may estimate a value of 
about t. With this a (5.3) becomes 

N = L R .  3 2  (5.4) 
This is in fair agreement with the observed straight line (which is approximately 
given by N = R/R,, where R, = 47r). 

For larger values of R (the motion still assumed to be cellular) we may use a 
slightly different approach to obtain the asymptotic relationship between N and 
R. Now vertical as well as horizontal boundary layers will develop in the convec- 
tion cell. It may be shown that the fluid outside the boundary layers (the core) 
is approximately isothermal. The proof is almost identical to that given by Pillow 
(1952) for ordinary BBnard convection. From (2.6) it then follows that the vor- 
ticity in the core is zero. Since all the streamlines are closed, the velocity in the 
core must also vanish. Let 8, and S, denote the thickness of the horizontal and 
vertical layers respectively. The Nusselt number may then be written as 

N N &I, (5 .5)  

where N means ‘of the order of’. The formula (5.3) is still valid. It must be 
remembered, however, that by horizontal integration we now get contributions 
only from the vertical boundary layers. Equation (5.3) therefore leads to 

N N R6,, (5.6) 

where we have used the fact that 0 is of order unity. 
The last required relation is obtained by applying the heat equation in one 

of the vertical boundary layers. Retaining only the leading terms, we have from 
(2.12) 

we, = a w l a X 2 ,  (5.7) 

R N (5.8) 

where 0, is of order unity and w is given by (5.2). Equation (5.7) thus gives 

Combining (5.5), (5.6) and (5.8), we finally obtain 

and N N Ra. 
(5.9) 

(5.10) 

To our knowledge, no experimental results with which (5.10) can be compared 
are available. 

Boundary-layer considerations in porous convection have also been applied 
by Elder (1967). However, he neglects the vertical boundary layers, and, instead 
of obtaining (5.10), finds that the Nusselt number is proportional to the Rayleigh 
number (as in formula (5.4)) which is true for moderate values of R. 

It was mentioned above that the observed relation between R and N is nearly 
linear (see figure 1) for moderate Rayleigh numbers. Strictly speaking, this is 
only true for a porous medium composed of small grains. In the case of larger 
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FIGURE 3. Comparison of the sixth-order Nusselt number N@) with the experimental data 
of Schneider and Elder. - , N o ) ,  s = 3. Schneider (1963): 0, 4mm glass spheres in 
water; A, 10mmglassspheresinturpentine. Elder (1967): a, 8mmglassspheres; 0,18mm 
glass spheres; m, small glass spheres. 

grains the observed data follow the straight line closely up to a certain Rayleigh 
number, the second critical Rayleigh number, whereas for still larger Rayleigh 
numbers the data deviate markedly from this line, as is indicated in figure 3. 
This deviation cannot be explained by the occurrence of horizontal and vertical 
boundary layers (which lead to (5.10)) since the corresponding Rayleigh numbers 
obviously are too small. The only explanation seems to be that at the second 
critical Rayleigh number Darcy's law in the form (2.4) ceases to be valid. Darcy's 
law in this form is valid only for Reynolds numbers less than about unity; for 
larger Reynolds numbers the right-hand side in (2.4) is a quadratic function of 
the velocity. To examine this hypothesis more closely we shall try to calculate 
the Reynolds numbers at  which the deviations from the straight line begin. 
Before doing this, we mention that the phenomenon of the second critical Ray- 
leigh number has already been studied by Schneider (1963) and Elder (1967), 
who both put forward the suggestion that at  this point the thickness of the 
horizontal boundary layers have become of the same order of magnitude as the 
grain diameter. 

A reasonable definition of the Reynolds number is 

Re = ( (v2) )sd /v ,  (5.11) 

where the pointed brackets and the bar denote the mean obtained by vertical 
and horizontal integration, respectively. Here the velocity, the grain diameter 
and the kinematic viscosity are dimensional quantities. On changing to non- 
dimensional variables, the Reynolds number takes the form 

Re = ((v2)):d/Pr,  (5.12) 
- 
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where Pr is the Prandtl number ( = V / K ~ ) .  The energy equation, derived from (2.6) 
and (2.7), is 

(3) = R(wB) ,  (5.13) 

in which we have used the boundary conditions (2.14). Furthermore, from (3.18) 
we obtain 

( G ) = N - l ,  (5.14) 

which, when combined with (5.12) and (5.13), leads to 

Re = R*(N - I)& Pr-Id. (5.15) 

To our knowledge, the only available observations giving the necessary informa- 
tion about the second critical Rayleigh number are those made by Schneider 
(1963), and from these we have been able to select only three different cases: 

(i) Steel spheres in burpentine: R = 60, N = 1.5, Pr = 1.42, d = g. 
(ii) Glassspheresinturpentine: R = 180,N = 4, Pr = 4.15,d = &. 
(iii) Glass spheres in water: R = 300, N = 7, Pr = 5.35, d = &. 

From (5.15) we then obtain Re = 1.47, 1-40 and 1.38 for cases (i), (ii) and (iii) 
respectively. Thus the Reynolds numbers at  which the observed data start 
deviating from the straight line are all very close to unity and remarkably con- 
stant. We therefore conclude that the few available experiments do support our 
hypothesis. 

Finally, it may be worth mentioning that, by replacing Darcy’s law with a 
quadratic velocity law, an argument similar to that leading to (5.10) gives 
N N R*, which is in fair agreement with the observed data for Rayleigh numbers 
larger than the second critical value. 
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